Peter Sarnak

Princeton University and Institute for Advanced Study

We may earn commissions for purchases made via this page

Book Recommendations:

Recommended by Peter Sarnak

The book under review succeeds handsomely in making the case for the Riemann Hypothesis to a wide audience … Beginning with the definition of prime numbers, the authors weave their way through concrete and picturesque presentations of elementary techniques and descriptions of unsolved problems connected with the primes. (from Amazon)

Prime Numbers and the Riemann Hypothesis book cover

by Barry Mazur, William Stein·You?

Prime numbers are beautiful, mysterious, and beguiling mathematical objects. The mathematician Bernhard Riemann made a celebrated conjecture about primes in 1859, the so-called Riemann Hypothesis, which remains to be one of the most important unsolved problems in mathematics. Through the deep insights of the authors, this book introduces primes and explains the Riemann Hypothesis. Students with minimal mathematical background and scholars alike will enjoy this comprehensive discussion of primes. The first part of the book will inspire the curiosity of a general reader with an accessible explanation of the key ideas. The exposition of these ideas is generously illuminated by computational graphics that exhibit the key concepts and phenomena in enticing detail. Readers with more mathematical experience will then go deeper into the structure of primes and see how the Riemann Hypothesis relates to Fourier analysis using the vocabulary of spectra. Readers with a strong mathematical background will be able to connect these ideas to historical formulations of the Riemann Hypothesis.

Recommended by Peter Sarnak

A compelling in-depth account of modern complexity theory and related mathematics by one of its principal architects. A must multiread for mathematicians and scientists, students and experts alike. (from Amazon)

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyondHigh-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific disciplineHistorical accounts of the evolution and motivations of central concepts and modelsA broad view of the theory of computation's influence on science, technology, and societyExtensive bibliography